
Information technology has transformed the way health 
care is carried out and documented. Presently, the practice 
of health care generates, exchanges and stores huge 
amounts of patient-specific information. In addition to the 
traditional clinical narrative, databases in modern health 
centres automatically capture structured data relating 
to all aspects of care, including diagnosis, medication, 
laboratory test results and radiological imaging data.

This transformation holds great promise for the 
individual patient as richer information, coupled 
with clinical decision support (CDS) systems, becomes 
readily available at the bedside to support informed 
decision making and to improve patient safety1,2. 
From a research perspective, integrated patient data 
constitute a computable collection of fine-grained 
longitudinal phenotypic profiles, facilitating cohort-
wide investigations and knowledge discovery on an 
unprecedented scale3. Biomedical research increasingly 
uses methods from data mining, machine learning 
and text mining to investigate, for example, disease 
comorbidities, patient stratification, drug interactions 
and clinical outcome.

The ability to derive fine-grained patient phenotypes 
from health record data complements the increasingly 
detailed characterization of genetic variation and thus 
allows fine mapping of genotype–phenotype correlations. 
Detailed phenotyping is also expected to advance and 
partly automate the process of recruiting patients for 
clinical trials and case–control studies. The prospect of 
patient record data driving genomic research becomes 

especially interesting when traditional health-care-sector 
data is linked with biobanks and genetic data4.

Despite the great potential, researchers who wish to 
analyse large amounts of patient data are still faced with 
technical challenges of integrating scattered, heterogene-
ous data, in addition to ethical and legal obstacles that 
limit access to the data5,6. It is hoped that large-scale 
adoption of health information technology (HIT) infra-
structure in the form of electronic health records (EHRs) 
and agreed standards for interoperability and schemes 
for privacy and consent, will improve this situation 
(TABLE 1). With incentives for improved public health 
and the expected health budget savings7,8, these matters 
are receiving much political attention worldwide. This 
is all part of a growing realization that secondary usage 
of patient data for population-wide research is key to 
bridging the translational gap between bench and bed-
side and moving closer to a realization of personalized 
and stratified medicine9.

In this Review we first introduce the typical content 
of a generic EHR system. We then focus on how data-
driven knowledge discovery on cohort-wide health 
data can fill knowledge gaps and assist informed 
clinical decision making. Next we describe how the 
integration of EHR and genetic data, together with 
systems biology approaches, can facilitate genotype–
phenotype association studies. Finally we discuss some 
of the structural and political challenges that are facing 
EHR adoption and we comment on the perspectives and 
visions for the future.
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Clinical decision support
(CDS). Software systems 
providing support for decision 
making to physicians through 
the application of health 
knowledge and logical rules to 
patient data.

Biobanks
Central repositories of 
biological material that are 
mainly used for research. They 
facilitate the re-use of collected 
samples in different research 
projects.
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towards better research applications 
and clinical care
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Abstract | Clinical data describing the phenotypes and treatment of patients represents an 
underused data source that has much greater research potential than is currently realized. 
Mining of electronic health records (EHRs) has the potential for establishing new patient-
stratification principles and for revealing unknown disease correlations. Integrating EHR 
data with genetic data will also give a finer understanding of genotype–phenotype 
relationships. However, a broad range of ethical, legal and technical reasons currently 
hinder the systematic deposition of these data in EHRs and their mining. Here, we consider 
the potential for furthering medical research and clinical care using EHR data and the 
challenges that must be overcome before this is a reality.
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Table 1 | Relevant resources and initiatives

Resource type Resource Website Description

Electronic health records (EHRs) and HIT

Standards 
development

OpenEHR http://www.openehr.org Open-source EHR standards initiative

ISO (TC 215) http://www.iso.org/iso/iso_technical_
committee.html?commid=54960

International Standards Organization

CEN (TC 251) http://www.cen.eu/cen/Sectors/
TechnicalCommitteesWorkshops/
CENTechnicalCommittees/Pages/default.
aspx

European Committee for Standardization

HL7 http://www.hl7.org/implement/standards Health Level 7 HIT standards 

CDISC http://www.cdisc.org/standards Data standards for clinical research  
data

Implementation and 
coordination

EuroRec http://www.eurorec.org European EHR adoption,  
interoperability and certification

Integrating the healthcare 
enterprise

http://www.ihe.net HIT standards, interoperability and 
certification

HITSP http://www.hitsp.org Standards harmonization and 
interoperability

epSOS http://www.epsos.eu Cross-border EHR data access in Europe

Office of the National 
Coordinator for HIT

http://healthit.hhs.gov/portal/server.pt/
community/healthit_hhs_gov__home/ 
1204

Coordination of HITECH act  
programmes

CEN–ISO 13606 Association http://www.en13606.org Promotion of the CEN–ISO 13606 
standard

NHS Connecting for Health http://www.connectingforhealth.nhs.uk UK National Health Service HIT strategy

Adoption 
monitoring

HIMSS analytics http://www.himssanalytics.org;  
http://www.himssanalytics.eu

International EHR adoption monitoring

Health research

Integrated  
DNA–EHR research 
databases

i2b2 https://www.i2b2.org Partners HealthCare (opt-in  
participation)

eMERGE Network https://www.mc.vanderbilt.edu/victr/dcc/
projects/acc

Cross-institutional EHR–DNA research 
network

Vanderbilt BioVU http://dbmi.mc.vanderbilt.edu/research/
dnadatabank.html

Vanderbilt University (opt-out 
participation)

Geisinger MYCODE http://www.geisinger.org/research/ 
centers_departments/genomics/ 
mycode/mycode.html

Geisinger Research (opt-in participation)

Kaiser RPGEH program http://www.dor.kaiser.org/external/
DORExternal/rpgeh

Kaiser Permanente (opt-in participation)

Million Veteran Program http://www.research.va.gov/mvp US Department of Veteran Affairs  
(opt-in participation)

EHR research 
databases

Stanford STRIDE project https://clinicalinformatics.stanford.edu/
research/stride.html

Stanford University EHR research 
platform

Other Medicare and Medicaid datasets www.resdac.org Insurance reimbursement database

FDA Sentinel Initiative http://www.fda.gov/Safety/
FDAsSentinelInitiative

FDA product safety monitoring initiative

International 
initiatives

EHR4CR http://www.ehr4cr.eu European EHR research framework 
initiative

Innovative Medicines Initiative http://www.imi.europa.eu European public–private funding 
initiative

EU-ADR project http://www.alert-project.org European Union adverse drug reactions 
research

I4Health network http://www.i4health.eu Bridging the gap between research and 
medicine

European Medical Information 
Framework

Under construction
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Table 1 (cont.) | Relevant resources and initiatives

Resource type Resource Website Description

Additional Ressources

Terminologies  
and ontologies

UMLS http://www.nlm.nih.gov/research/
umls

Unified Medical Language System

SNOMED CT (from the IHTSDO) http://www.ihtsdo.org International clinical terminology

ICD (from the WHO) http://www.who.int/classifications/
icd/en

International Classification of Disease

Patient-focused 
initiatives

PatientsLikeMe http://www.patientslikeme.com Patient disease monitoring community

23andMe https://www.23andme.com Personal genotyping

Microsoft Healthvault http://www.microsoft.com/en-us/
healthvault

Personal health data management service

There are numerous web resources and coordination actions in the area of EHR research and development. This table lists some resources that are driven by 
authorities and public agencies, major network-oriented research projects and patient-focused initiatives. CDISC, Clinical Data Interchange Standards 
Consortium; EHR4CR, Electronic Health Records for Clinical Research; eMERGE, electronic Medical Records and Genomics; epSOS, European Patients – Smart 
open Services; FDA, US Food and Drug Administration; HIMSS, Healthcare Information and Management Systems Society; HIT, health information technology; 
HITECH, HIT for Economic and Clinical Health; HITSP, HIT Standards Panel; i2b2, Informatics for Integrating Biology and the Bedside; IHTSDO, International 
Health Terminology Standards Development Organization; RPGEH, Research Project on Genes, Environment and Health; SNOMED CT, Systematized 
Nomenclature of Medicine — Clinical Terms; STRIDE, Stanford Translational Research Integrated Database Environment; WHO, World Health Organization.

Electronic health records
(EHRs). In this review we do not 
distinguish between EHRs, 
Electronic Patient Records 
(EPRs) and Electronic Medical 
Records (EMRs).

HITECH act
Part of the American Recovery 
and Reinvestment act from 
2009. The Health Information 
Technology for Economic and 
Clinical Health (HITECH) act 
allocates funding and attention 
to HIT infrastructure and 
electronic health record 
adoption and research in the 
United States.

ICD
The International Classification 
of Diseases (ICD) published by 
the World Health Organization. 
It has been translated into 
numerous languages.

Medicare
A US government health 
insurance programme primarily 
covering people aged 65 years 
and older.

Electronic health data
Ideally, EHRs capture and integrate data on all aspects 
of care over time, with the data being represented 
according to relevant controlled vocabularies (FIG. 1). 
EHR adoption is growing thanks to initiatives like the 
US$19 billion HITECH act10 in the United States and 
the €2 billion public–private partnership Innovative 
Medicines Initiative (IMI)11 in the European Union. 
Many national strategies also exist for the development 
and adoption of nationwide interoperable HIT 
architectures and EHRs12,13.

Not surprisingly, standardized, nationwide EHR 
systems are harder to implement in large countries 
than in smaller ones. According to the Healthcare 
Information and Management Systems Society 
(HIMSS) Analytics organization, larger countries 
(such as the United States, Canada, Germany, France, 
Italy and Spain) are behind several smaller European 
countries (such as Denmark, Holland and Sweden) in 
reaching the highest level of paperless data sharing, 
storage and decision support (Uwe Buddrus, HIMSS 
Analytics Europe, personal communication). Even 
though relatively few hospitals have adopted top-
level EHR systems covering all aspects of hospital 
operations, a substantial fraction do have IT 
infrastructure in place that captures valuable research 
data from different auxiliary clinical and administrative 
systems14. Such data represent the majority of 
available retrospective data for years to come, even if 
advanced EHR systems were to be universally adopted  
instantaneously.

EHR data comprise various data types, from 
structured information such as drug prescription 
data consisting of dates and dosages that are captured 
through a standardized ePrescription system, to 
unstructured data such as clinical narratives that 
describe the medical reasoning behind the prescription 
(FIG. 1). This range of different data types highlights the 
challenge in EHR integration.

Administrative data. Much of the data that is captured 
in EHR systems serve administrative purposes, such 
as monitoring hospital activity and performance, and 
government or insurance reimbursement. Even sim-
ple EHR systems will typically capture demographic 
patient information such as age, gender, ethnicity and 
address, as well as structured information about a given 
encounter in the form of dates and ICD-encoded diagno-
ses (often referred to as billing codes). The almost ubiq-
uitous use of these data types makes them a favoured 
source of phenotype information in population-based 
health research. However, because the amount of 
financial reimbursements depend on which codes are 
assigned to a given encounter there are biases in coding 
practice that need to be considered15.

Often researchers do not obtain health data directly 
from the EHR systems, but instead from derived 
central health registries or insurance databases (such as 
Medicare), which gather data for reimbursement, quality 
assurance or health statistics purposes. Merged national 
registries on health and socio-economic status16 
are a valuable source of standardized, longitudinal, 
population-wide data for traditional epidemiological 
studies17,18.

Ancillary clinical data. Regarding the generation of 
clinical data, the most important ancillary hospital 
functions are those that are provided by laboratories, 
pharmacies, and radiological and medical imaging 
departments. Physicians increasingly place requests 
for these services electronically through computerized 
physician order entry (CPOE) systems that automati-
cally log detailed information about the transaction. 
The data that are recorded from these transactions 
include information on drugs (dosages and time peri-
ods for prescriptions), and the test types and results 
from laboratory requisitions. Radiological imaging 
requests and results are exchanged the same way, but the 
extraction of information traditionally relies on human 

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 13 | JUNE 2012 | 397

© 2012 Macmillan Publishers Limited. All rights reserved

http://www.nlm.nih.gov/research/umls
http://www.nlm.nih.gov/research/umls
http://www.ihtsdo.org
http://www.who.int/classifications/icd/en
http://www.who.int/classifications/icd/en
http://www.patientslikeme.com
https://www.23andme.com
http://www.microsoft.com/en-us/healthvault
http://www.microsoft.com/en-us/healthvault


Nature Reviews | Genetics

Statistics

EHR database

Admin.

Time

Point of care

Research

RxNORM

LOINC

DICOM

SNOMED CT

Laboratory

Radiology

Pharmacy

Narrative

interpretation. However, image-analysis techniques can 
automate this data extraction (for example, by detecting 
pulmonary embolisms in computed tomography angi-
ographies19), thus adding a structured component that 
is usable in CDS systems.

Another ancillary source of potentially structured 
data is genotype and sequence data. Genotyping is still 
relatively novel in standard clinical practice, but common 
examples of its use include testing for primary lactose 
intolerance, cystic fibrosis, or BRCA variants in breast 
cancer therapy. Representation of the actual genetic 
sequence information is currently not well supported in 
EHR systems but will probably be included as genotyping 
becomes more widespread in clinical practice20,21.

Clinical text. Written or dictated clinical narratives such 
as admission notes, treatment plans and patient sum-
maries continue to be a cornerstone in the everyday pro-
cess of ensuring informed decision making through the 
recording and consultation of careful clinical documen-
tation. Clinical text is the most abundant data type, but 
is also the most difficult to analyse computationally. It is 
highly heterogeneous, does not always conform to nor-
mal grammar and is rich in author- and domain-specific 
idiosyncrasies, acronyms and abbreviations, as well as 
spelling and typing errors22. The context is complicated 
by many negations or references to different subjects, and 
assessments are often tentative or uncertain. Free text 
allows the flexibility to express case nuances and clinical 
reasoning; this flexibility is valued by clinicians and is 

not easily replaced by structured reporting formats that 
are often considered inflexible and time consuming23. 
Striking the right balance between expressiveness and 
structure is a complex and domain-dependent matter24.

Deriving structured information about patient 
phenotypes from clinical text generally requires named 
entities or concepts in the text to be recognized and 
mapped to codes in a relevant controlled vocabulary 
such as Systematized Nomenclature of Medicine — 
Clinical Terms (SNOMED CT)25 or one of the other 
>100 vocabularies in the Unified Medical Language 
System26. This is usually done using natural language 
processing (NLP) tools, which combine a range of 
linguistic, statistical and heuristic methods to analyse 
free text. BOX 1 describes typical tasks that are involved 
in using NLP to extract structured information (such 
as disease, drug, symptom and procedure terms) from 
clinical text.

The Mayo clinic’s clinical Text Analysis and 
Knowledge Extraction System (cTAKES)27, the 
Informatics for Integrating Biology and the Bedside 
(i2b2) HITEX28 and the long-running Medical Language 
Extraction and Encoding (MedLEE)29 system from 
Columbia University are all examples of NLP-based 
clinical phenotyping systems. Although still mostly 
used in research contexts, MedLEE has demonstrated 
performance similar to expert human curators30 
and is in clinical operation at several health facilities. 
Another system, MedEx31, focuses on extracting detailed 
medication data from text. For a more detailed account 

Figure 1 | Electronic health record content. The electronic health record (EHR) of a patient can be viewed as a 
repository of information regarding his or her health status in a computer-readable form. An encounter with the 
health-care system generates various types of patient-linked data. In the example shown, medication, laboratory, imaging 
and narrative data are all generated. Each data type is ideally captured according to standards or classifications, such as 
RxNorm111 for prescription data, Logical Observation Identifiers Names and Codes (LOINC) for laboratory data and Digital 
Imaging and Communication in Medicine (DICOM) for imaging files. Clinical narratives are inherently free text, but often 
contain clinical terms that are coded according to International Classification of Disease-9 (ICD-9) or ICD-10 (REF. 112) or 
Systematized Nomenclature of Medicine — Clinical Terms (SNOMED CT)25. Integrated auto-coding systems may in some 
cases map free text to clinical terms. Patient data are stored in a database and can be viewed in formats matching the 
needs and authorities of specific user groups. For example, a clinician might request EHR data for a particular patient, a 
statistical summary of all laboratory procedures and a specified cohort extraction for drug research.
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Part-of-speech tagging
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diseases .arterycoronaryoffxnobutobesityofFx| | | | | | | | | | | |

NNSNN

NP

JJINNN

NN

DTCCNNINNN

Shallow parsing

Entity recognition

NPPPNP

Fx of obesity but no fx of coronary artery diseases.[ []]... ... ... ... 

Obesity
Disease or disorder 
UMLS ID: C0028754
Status: family history
Negated: no

Coronary artery disease
Disease or disorder
UMLS ID: C0010054 
Status: family history
Negated: yes

Coronary artery
Anatomy
UMLS ID:C0205042

Charlson index
A measure of the accumulated 
disease burden for a patient.  
It is calculated as a weighted  
sum of 22 selected medical 
conditions that are assigned 
scores depending on the 
severity of the condition.

of NLP and the text mining of clinical text see REF. 22 and 
the September 2011 special issue of the Journal of the 
American Medical Informatics Association (JAMIA)32.

EHR knowledge discovery informing care
EHR at the point of care. Cohort-wide data mining 
of EHR databases provides an approach to generate 
context-specific and clinically actionable knowledge that 
can inform the tailoring of treatments to the individual. 
Clinical decision making is a complicated task in which 
the physician must attempt to bridge what has been 
referred to as an inferential gap1 between the information 
at hand in a given case and the clinical knowledge 
that is required to decide on the best treatment. EHR 
systems can narrow this gap by programmatically 
implementing clinical guidelines in CDS systems that 
can process all of the EHR data that have been recorded 
about the patient. A common CDS module in clinical 
operation is for monitoring conflicts between ordered 
drug prescriptions and recorded allergies or existing 
prescriptions. Another example is for the early warning 
of infection, with suggestions for antibiotic treatment 
and dosage based on physiological data33. For complex 
rules or when the necessary information is not available 
in structured form, NLP-based processing of text may 
supplement structured data points34.

As described in the next sections, exploring this 
knowledge-discovery potential from multivariate 
health data increasingly involves a suite of statistical, 
machine-learning and computational methods that are 
often referred to as data-mining methods or knowledge 
discovery in databases (KDD) methods35–37.

Correlating clinical features. A clinical topic of great 
interest is disease co-occurrence (comorbidity). In clini-
cal practice, the cumulated disease burden of a patient 
is often summarized in comorbidity scores such as the 
Charlson index, and these scores are also often used to 
interpret confounding effects of comorbid diseases in 
cohort studies38. Except for clear hypothesis-driven 
investigations of specific diseases, small cohort sizes have 
often not allowed a detailed view of the co-occurrence  
patterns of individual pairs or small sets of diseases. 
Structured and narrative EHR and registry data allow 
us to approach comorbidity in a data-driven statisti-
cal way by using simple contingency tables to quantify 
comorbidities for any pairs of diseases in terms of the 
disproportionality with which they co-occur in large 
cohorts39–41 (FIG. 2a). Population-wide comorbidity 
patterns from Medicare data have, for example, been 
visualized in comorbidity networks42. Combining and 
validating comorbidity evidence from EHR text mining, 

Box 1 | Natural language processing

Typical natural language processing (NLP) steps exemplified by the clinical Text Analysis and Knowledge Extraction 
System (cTAKES) clinical text-mining pipeline27. First, sentence boundary detection splits the text into units of individual 
sentences. This is followed by tokenization, which splits the text using space and punctuation as a guide to identify 
individual tokens (typically individual words), with rules for handling special cases such as dates. Tokens are reduced to a 
base form by normalizing, for example, case, inflection or spelling variants. The next step assigns part-of-speech tags to 
each token to identify its grammatical category in the context (for example, NN for noun, IN for preposition or JJ for 
adjective). This is not a trivial task as many words have ambiguous meaning. After the tokens have been tagged, the 
shallow parsing step identifies syntactic units, most importantly noun phrases (NPs), which are grammatical units, built 
from a noun with optional modifiers such as adjectives. In the entity recognition step, NPs and various lexical 
permutations are then mapped to controlled vocabularies using tools such as MetaMap106. Importantly, such systems 
also identify the presence of negating terms, such as ‘no’ or ‘never’, near identified entities. The various steps are 
typically implemented using combinations of logical rules (and their exceptions) and machine-learning methods. For 
example, a full stop (period) followed by a space and a capital letter indicates a sentence boundary. In the figure, two 
disorders are identified as well as one anatomical structure. Both disorders are tagged as relating to family history (Fx), 
and, in the case of coronary artery disease, the preceding word ‘no’ tags the term as negated. Clinical information 
extraction systems generally perform best when fine-tuned for specific tasks or clinical domains, such as identifying 
smoking status or analysing radiology reports. Vocabularies can be customized for a task with domain-specific terms, 
and the rules and training can be focused. The annual Informatics for Integrating Biology and the Bedside (i2b2) NLP 
shared tasks107–110 meeting provides a good demonstration of state-of-the-art practice in clinical NLP applied to 
increasingly difficult challenges. The 2010 challenge prompted participants to extract concepts, assertions and 
relations from clinical text110. CC, coordinated conjuction; DT, determiner; NNS, plural noun. 
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with medical knowledge extracted through literature 
mining, has also been attempted41.

In pharmacovigilance, disproportionality methods are 
used in post-marketing drug surveillance43, which is 
mainly based on the voluntary reporting of adverse drug 
event (ADE) data to spontaneous reporting databases; 
such events suffer from gross underreporting44. As an 
alternative, mining of medication and ADE data that 
are captured routinely in EHRs is being explored as an 
approach to rapidly uncover drug–ADE associations45. 
Such an approach may be more powerful if data from 
several countries are pooled, such as in the European 
Union adverse drug reactions (EU-ADR) project46; the 
international nature of the project emphasizes once 
again the importance of EHR interoperability. Similar 
approaches have been used to investigate off-label drug 
prescriptions and adverse drug interactions47.

Association rule mining48,49 is a KDD method that is 
often applied to the challenge of exploring the enormous 
combinatorial space of clinical features to identify 
potential correlations. From a frequently co-occurring 
set of features (for example, [warfarin, aspirin, bleeding]) 
the method identifies statistical rules (such as [warfarin, 
aspirin] → [bleeding]). This indicates an increased 
likelihood of a person being associated with the clinical 
finding ‘bleeding’ if that patient is also associated with 
the drugs warfarin and aspirin50.

To identify interesting correlations from a 
background of trivial and spurious findings, any 
data-driven approach must filter the results based on 
statistical significance, interest and novelty. Seemingly 
exciting correlations are often due to transitive 
relationships; for example, a correlation between insulin 
use and hypertension is trivially explained by insulin use 
correlating with diabetes, which in turn correlates with 
hypertension. However, transitive relationships may 
themselves be interesting discoveries. In text mining of 
the biomedical literature this approach has long been 
used to discover hidden associations51,52. Ultimately, 
manual curation by domain experts remains a necessary 
layer of analysis40.

Because most current EHR data sets that cover 
specific disease areas over long time periods are only 
of moderate size, findings often need to be validated in 
independent data sets. These can come either from EHR 
systems or from population-wide registries that collect 
data across hospitals and geographical regions. There is 
thus a high degree of synergy between EHR data mining 
and conventional epidemiology on registry data, because 
the latter can be used to replicate discoveries that have 
been made in smaller EHR cohorts.

Prediction from data. The existence and detection 
of correlations in data provide the basis for predicting 
future patient outcomes from a given scenario. Predictive 
clinical modelling uses machine-learning methods to 
build multivariate models from clinical data and sub-
sequently to make inferences on unknown data (FIG. 2b;  
BOX 2). Examples include the prediction of surgery 
outcome53, breast cancer survival54 and coronary heart 
disease risk55 from variables such as age, sex, smoking 

Figure 2 | Four ways to analyse EHR data. A simplified illustration of an electronic 
health record (EHR) research database and some of the data-driven methods that 
are discussed in the main text. We represent 1,000 patients as a binary association 
or non-association with clinical features. These features include diagnosis codes  
(in red), medications (in blue), laboratory data (in green) and demographic data (in 
yellow), but we consider no temporal aspects. a | From the database prevalence  
of any two diseases (here, C4 = 100 and C2 = 50) it is possible to calculate the 
expected number of patients associated with both diseases assuming 
independence ((100/1000)×(50/1000)×1000 = 5) and compare it with the observed 
value (10 in this example), thus giving a relative risk of 2. b | A very simple decision 
tree classifier illustrating how the likelihoods of two outcomes (Y and N) are 
classified using three clinical features. Associations are illustrated with diagnosis 
C3, results from laboratory test L2 and age (whether higher or lower than 50 years). 
c | Using a simple measure for clinical similarity (number of identical associations) 
hierarchical-clustering methods can be used to group patients according to their 
clinical profile. d | In order to assemble a case cohort with matching controls, a 
query can be submitted to the database for patients associated with, and not 
associated with, certain features. In this example, both cases and controls must  
be associated with diagnosis C4 and the demographic feature D2, but only cases 
are allowed association with medication M1.
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Pharmacovigilance
Monitoring of adverse drug 
events during clinical trials and 
after marketing in order to 
prevent harm to patients. It is 
typically based on statistical 
pattern-finding in databases of 
reported adverse events.

Adverse drug event
(ADE). Used in pharmacology 
to describe any unexpected or 
harmful event associated with 
a given medication.

status, hypertension and various biomarkers. Another 
high-profile example is the $3 million Heritage Health 
Prize data-mining competition that invites participants 
to predict future hospital admission based on insur-
ance claims data, prescription data and laboratory test 
data56. Identifying the most explanatory features from 
the set of all features is a crucial task in this type of  
supervised learning.

Although some methodology exists36, temporal 
data mining of longitudinal health data is still in its 
early stages. Uncovering patterns in patient trajectories 
through disease and intervention nodes (such as 
medication or clinical procedures) in a clinical feature 
space is a statistically and computationally challenging 

task that has so far not been thoroughly explored57. 
Establishing patterns of directionality in comorbidity 
and disease progression is a first step towards using 
EHRs for predictive purposes, and this has been explored 
in network analysis studies of Medicare data42,58. Health 
data that are recorded over short timescales (such as 
time series data of blood glucose levels) are sometimes 
collected in EHR systems; for these short-term data, 
various analysis methods exist59.

Patient stratification. The general goal of clinical predic-
tion models is the stratification of a patient cohort into dif-
ferent subpopulations so that within each subpopulation, 
patients have similar characteristics, such as likely out-
comes, risk or prognosis. A more direct approach to strat-
ification is to use clustering methods and semantic similarity 
metrics to group patients60,61 based on their associated  
clinical features and temporal patterns40 (FIG. 2c).

Much clinical and genetic research depends 
critically on the identification and recruitment of 
large, phenotypically constricted cohorts of cases and 
a matched set of controls to ensure statistical power 
for rare and weakly penetrant alleles. Similarly, clinical 
trials rely on the homogeneity of the study population. 
The stratification task has remained costly and time 
consuming, while the cost of, for example, genotyping 
has dropped dramatically. One of the biggest research 
promises of EHR systems is to alleviate this bottleneck 
in cohort studies62.

Phenotype querying of structured data and 
NLP-encoded text in derived, de-identified EHR 
databases (FIG. 2d) facilitates the inexpensive and timely 
identification of matching subjects for cohort studies. 
This is the scenario realized in the i2b2 framework63 
and in the electronic Medical Records and Genomics 
Network (eMERGE Network)64. A high precision65,66 of 
the approach has been documented and demonstrated 
in genome-wide association studies (GWASs) and 
other types of cohort research67–74. In Europe, the IMI-
funded Electronic Health Records for Clinical Research 
(EHR4CR) initiative aims to build a similar, multi-
language platform for EHR-based medical research 
across distributed EHR systems.

Linking to the molecular level
Integrating genetics. Realizing the full potential of 
EHR-based recruitment of patients for genetic research 
requires a framework for the easy acquisition of matched 
DNA samples and for patient consent4. Affiliates of 
i2b2 and eMERGE, such as Vanderbilt University, have 
facilitated this by linking EHR data to biobanked blood 
samples that have been accrued during routine clinical 
care62,64. Sanction for the use of EHR data in research 
in anonymous form is obtained as part of the standard 
treatment consent form75. This type of integrated 
biobanking not only leverages the entire recruitment 
process, but also enables the re-use of patient samples 
and genetic data in later studies that require little or 
no new genotyping70. The addition of genetic data also 
extends the set of features that are available for predictive 
modelling and rule-mining approaches.

Box 2 | Machine learning on EHR data

Machine-learning techniques are data-driven approaches that are designed to discover 
statistical patterns in high-dimensional, multivariate data sets, such as those that are 
frequently found in electronic health record (EHR) systems. The starting point for 
machine learning is a data set of training examples, which in the context of EHRs 
typically originate from individual patients. Each example is represented by a feature 
vector, which may be any combination of data items that are stored in EHR systems. 
Machine-learning methodology is well suited for handling nonlinear correlations 
between the feature vector components and metadata, such as patient subcategories.

Supervised and unsupervised learning
Data sets come in two types: labelled and unlabelled. In labelled data sets, each 
example has a pre-assigned category or value, whereas in unlabelled data sets this is 
not the case. Machine-learning methods can be grouped into supervised and 
unsupervised approaches according to the labelling of the examples.

A supervised training method handles a data set of labelled examples from which it 
derives a model that predicts the labels from the features. Labels may represent, for 
example, alternative diagnoses to be predicted from laboratory test results. Some of 
the most commonly used supervised methods are: naive Bayes; artificial neural 
networks; support vector machines; and random forests. By contrast, unsupervised 
methods, such as self-organizing maps and clustering algorithms, take an unlabelled 
data set and attempt to find groups of examples sharing similar features. Patient 
stratification is a typical medical use for such methods.

Strengths and weaknesses
Data from EHR systems are challenging to analyse for a variety of reasons. The data 
have many dimensions but are sparse (that is, many features describe patients but most 
of them are typically absent for any given patient). The features are heterogeneous, 
encompassing quantitative data, categorical data and text. Furthermore, these data are 
subject to random errors and systematic biases.

Given sufficiently large data sets, most machine-learning methods are highly robust 
to random errors, both in the input features and the labelling. This is especially true if 
they are combined with preprocessing and so-called feature selection algorithms such 
as principal component analysis and data normalization to put them on a common 
scale.

The Achilles heel of machine-learning methods — and all other statistical methods — 
is systematic bias in the data. Being purely data-driven, the methods have no way of 
distinguishing medically relevant signals from systematic, undesired biases in the data. 
For example, this could be the systematic erroneous use of disease terminology codes 
caused by strategic billing. Another risk in machine learning is overfitting, for which the 
predictive performance is overestimated owing to a lack of data, or because incorrect 
test or validation procedures are used to create models.

Clinical usage
The safety considerations of clinical work mean that for decision support relating to 
treatment, machine-learning models generally serve only a supporting role. Whether 
predictive models outperform the manual inspection of EHR data clearly depends on 
the specific task. With the growing number of recorded features in EHRs, machine- 
learning methodology has a huge potential for adding and complementing expertise 
that is currently held by staff in the health-care sector.
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Feature vector
The representation of objects 
(patients) as vectors in the 
space of all relevant features. 
Each dimension of the vector 
specifies the association of a 
patient with a certain feature.

Clustering
A common task in statistical 
data exploration using 
measures of similarity between 
data points, network topology 
or other methods to group 
data points with similar 
characteristics together in 
clusters.

Semantic similarity
A measure of the similarity of 
two concepts in terms of their 
meaning or semantic content. 
Often quantified using 
topological measures  
of distance in an ontology of 
concepts, such as WordNet or 
Systematized Nomenclature  
of Medicine — Clinical Terms 
(SNOMED CT).

Electronic Medical Records 
and Genomics Network
(eMERGE Network). An 
institutional network that is 
exploring the potential of 
electronic health record data in 
genetic and medical research. 
Participating institutions are: 
GroupHealth, Geisinger, 
Marshfield Clinic, Mayo Clinic, 
Mount Sinai School of 
Medicine, Northwestern 
University and Vanderbilt 
University.

Pharmacogenomics
The study of how genetic 
variants influence the effects of 
drugs on, for example, drug 
metabolism, efficacy and 
toxicity, with the goal of 
improving and personalizing 
drug therapy.

Million Veteran Program
A research project initiated by 
the Veterans Affairs Office of 
Research and Development 
that is aimed at establishing a 
database with DNA and health 
record data from one million 
people. Participation is opt-in.

Kaiser RPGEH
The Kaiser Permanente 
Research Project on Genes, 
Environment and Health 
(Kaiser RPGEH). This project 
aims to establish a research 
database with genetic data, 
environment data and health 
record data from 500,000 
people. Participation is opt-in.

The general goal of combining detailed EHR-based 
patient phenotyping and genetic data has also inspired 
an interesting reversal of the GWAS approach to gene–
disease association. A phenome-wide association 
study (PheWAS)76, introduced by Vanderbilt BioVU, 
starts with the individual SNP and checks for statistical 
association against hundreds of disease phenotypes of 
patients that have been genotyped for that SNP.

Pharmacogenomics is another research area that is 
embracing the integration of EHR data with genetic 
data77. It is expected to have large translational impact 
through basing therapeutic choices and CDS on a 
patient’s genetics78,79. Drug efficacy is influenced by 
genetic variation, as is seen in the example of the dose 
response to the anticoagulant warfarin being affected by 
at least three genetic variants80.

The detailed longitudinal patient profile that 
can be assembled from EHR data enables drug 
exposure profiles to be correlated with treatment 
outcome measures, such as efficacy and toxicity, using 
structured and unstructured sources. Linked biobank 
and genetic data then allow the association of such 
correlations with the underlying genotype. One study 
based on biobanking and EHR data identified genetic 
variants that are associated with an increased risk of 
thromboembolism in patients with breast cancer that 
were treated with Tamoxifen81.

Systems biology and gene-network-based decision 
support. Most phenotypes are influenced by numer-
ous genes. Systems biology approaches go beyond the 
individual gene to instead analyse protein complexes, 
pathways and gene networks to bridge the gap between 
genetic linkage and the underlying molecular biology. 
Taking a systems-level view of phenotypes can also 
shed new light on the temporal aspects of phenotypes; 
for example, in explaining how different mutations in 
the same genes can lead to disorders that are related to 
different stages of heart development82. Similar types 
of analyses can be used to interpret differences in the 
human microbiomes between individuals, as shown 
in a pathway analysis of gut metagenomics data in the 
context of obesity and inflammatory bowel disease83.

Most systems biology approaches for identifying 
disease genotype–phenotype relationships have started 
from genetic linkage data rather than traditional EHR 
data. That being said, it is possible to estimate the 
degree of genetic overlap between two diseases based 
on traditional EHR data alone84. Also, traditional  
EHR data from one cohort can be combined with 
genetics data from other cohorts in an attempt to 
unravel the molecular basis of comorbidities. An 
approach to investigate the underlying molecular 
aetiology of disease correlations that have been 
uncovered using EHR data is to map the diseases to 
known associated genes and proteins, and to investigate 
the resulting protein–protein interaction network for 
statistical overlaps40. This has also been an approach in 
network medicine, in which diseases are clustered based 
on shared associated genes, as is seen, for example, in 
the human disease network85. Using comorbidities from 

Medicare claims data, Park et al.86 used gene–disease 
association data to document that higher comorbidity 
was related to increased genetic overlap.

Today, patient-specific information on sequence 
variation in the genes and proteins included in systems-
level models of phenotypes exists mostly for selected 
research cohorts. However, this will soon change owing 
to the rapid decline in the cost and time required to 
sequence a human genome. This will make it possible 
to include sequence variation in phenotype-specific 
network models and to use these for decision making 
in the health-care sector and in the development of 
personalized treatment regimens.

A key obstacle in the use of genome data for decision 
making in the clinic is the billions of features that are 
contained in a single human genome87. The huge 
number of sequence variants represents a general 
problem of multiple testing and makes it difficult 
to discriminate between ‘causal’ variation that has 
predictive value in the clinic and the substantial 
amount of ‘passenger’ variation that travels along 
in an uncorrelated manner. Systems-level analyses 
can drastically reduce the combinatorial problem by 
grouping individual genetic variants that affect the same 
molecular machinery, thus increasing the feasibility of 
turning EHR data into valuable clinical markers relative 
to single-gene approaches88,89.

Limiting factors — key problems to overcome
Although researchers working at the interface between 
bioinformatics, systems biology and medical informatics 
are eager to analyse and integrate medical record data, 
a wide range of factors are delaying this development. 
Data-mining analysts are generally accustomed to 
handling disorganized databases, incompatible formats 
and missing database interoperability; these problems 
need to be solved in the long run if the full potential of 
this type of analysis is to be reached. However, the main 
impediment today is the problem of making simple data 
dumps available to researchers.

In a recent public address, the British Prime 
Minister, David Cameron, announced plans to make 
the UK National Health Service data available for 
research. Furthermore, in the United States, large 
federal grants are aimed at promoting health research 
through establishing extensive patient databases such 
as the Million Veterans Program and Kaiser RPGEH. The 
restriction on access to existing data is the primary 
hindrance to development.

Privacy, autonomy and consent. Although patients typi-
cally have no legally recognized property right to their 
health records90, privacy legislation in many countries 
has traditionally placed great weight on personal auton-
omy and has required informed consent for accessing 
personal health data for research. In the case of health 
databases this has often been translated into opt-in par-
ticipation models. From a research point of view this 
amounts to increased time and cost91 and the risk of 
biased data resources owing to differing inclinations to 
participate among demographic groups92. It has been 
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argued that today, when database-driven research can 
be conducted without interfering with people’s lives, 
legacy-consent models that have been put in place to 
protect research subjects from harm are no longer rel-
evant and should be updated or waivered in the inter-
est of the common good6,93. Whereas this is already 
largely the case in, for example, Scandinavian coun-
tries, such loss of autonomy would probably be met by 
public outcry in countries with strong privacy advocacy  
movements, such as the United States.

A legitimate public concern that is related to the 
use of personal health data for research is the risk of 
privacy breaches. A technical solution is to de-identify 
research data according to specifications such as those 
in the Health Insurance Portability and Accountability 
Act (HIPAA) privacy rule. De-identification normally 
allows researchers to circumvent costly consent 
regimes94, but the lack of identifiers makes certain 
types of population-wide research impossible, as 
other information cannot be linked to data subjects. 
Moreover, despite such precautions, re-identification 
has been shown on some occasions to be a genuine 
risk95, especially when data on human DNA are 
involved, as even a relatively small set of markers can 
enable unique identification96–98. Similar concerns 
apply to other types of molecular-level data, for 
example, individual gut microbiome profiles99. Another 
public concern that is at odds with loosened consent 
models is the fear that personal data could be used for 
research that is in conflict with an individual’s ethical, 
moral or religious convictions100. The permanency of 
data only adds to these concerns, as many of the data 
types will largely remain static throughout life, whereas 
data protection should be effective over long periods 
of time.

Interoperability across institutions, countries and  
continents. By analogy to the meta-analysis of epidemi-
ological and genetic data, in which single cohorts often 
provide insufficient statistical power to make inferences, 
EHR data need to be merged across regional barriers in 
order to provide the strongest basis for research. Due 
to the currently limited EHR adoption and interoper-
ability, centralized health registries partially fulfil this 
role, although their level of detail is lower than what is 
obtainable from complete EHRs.

True data interoperability requires the development 
and implementation of standards and clinical-content 
models101,102 for the unambiguous representation and 
exchange of clinical meaning103. Various international 
certification and standards bodies pursue this goal, 
such as the European Committee for Standardization 
(CEN), the International Standards Organization (ISO) 
and Health Level 7 (HL7).

The CEN–ISO 13606 standard101 adopts the concept 
of archetypes to formalize all aspects of a concept that 
a clinician might want to describe and combines this 
with international ontologies such as SNOMED CT. 
Archetypes separate the representation of clinical data 
from the underlying technical implementation and 
are authored by domain experts themselves without 

the need for technical expertise104. For example, an 
archetype for the concept ‘blood pressure’ would contain 
a representation of both the actual blood pressure 
measurements and contextual attributes (patient resting 
or active; sitting or lying; arm or leg; or left or right) 
that could be important for the correct interpretation 
of data. An archetype for a broader composite concept 
such as ‘family history’ becomes more complex.

Implementations of such standards in current 
and future EHR systems are underway and will 
make it possible to establish large cohort studies with 
harmonized phenotypes and will enable the creation of 
international health data repositories for research.

Outlook
The molecular-level characterization of human diversity 
is becoming continually more detailed, not only in 
terms of basic DNA sequencing but also regarding 
histone modifications and their functional impact. 
By contrast, the phenotypic manifestations of all this 
detail are often insufficiently represented using broad 
categories of disease, in which categories typically 
represent end points rather than exhaustive trajectories 
of disease development. Clearly, if the functional  
impact of human genetic variation is to be fine-mapped 
onto the space of phenotypes, data such as those that 
are included in EHRs will be needed in order to define, 
by data-driven methods, detailed phenotypes that also 
cover their inherent comorbidities. In turn, this may 
make it possible to categorize the functional part of 
human genetic variation in much higher detail.

Citizens are increasingly becoming engaged and 
empowered participants in managing their own 
health. For example, this can be through using tools 
for extracting data from hospital systems, general-
practitioner systems and pharmacies. As a special case of 
today’s data sharing trend, online health resources such 
as PatientsLikeMe allow patients to share detailed health 
and treatment information, which again is providing a 
novel data source for cross-cohort studies105. This type 
of resource may also be seen as a reaction to the fact that 
the official EHR data are not being made sufficiently 
available for research. However, although many of these 
developments focus on access for the individual, what 
is clearly needed is access for researchers across cohorts 
and populations. This is still the weak aspect in the 
research on new data sources such as EHRs.

A recent survey by HIMSS Analytics Europe 
identified ‘funding’ as the key barrier to progress in the 
EHR area, and other factors such as ‘staff habits’ were 
also high on the list in many countries. The intimate 
link to funding also makes it hard to forecast when a 
major shift in data availability may take place. As EHRs 
and EHR-related data mining is meant to reduce the 
overall cost of health care long-term (and increase 
the quality of life), this is obviously an incongruity. 
However, it is also evident that there is no strong 
conflict of interest between the populations, politicians 
and researchers. All stakeholders have a joint and 
urgent task to solve EHR challenges, but the solutions 
hold great promise.
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